Data Conversion and Lab (17.368)

Fall 2013

Lecture Outline

Class # 01

September 05, 2013

Dohn Bowden

Today's Lecture Outline

- Course Admin
- General Course Overview
- Detailed Technical Discussions
 - Basic Analog
 - Quick Look at ADC
 - The Op Amp
 - The Comparator
- Lab
- Homework

Course Admin

Administrative

- Admin for tonight ...
 - Attendance/Introductions/Backgrounds
 - Syllabus
 - Textbook
 - 17.368 Web Site
 - Email List creation
 - Course Objectives

Attendance/Introductions/Backgrounds

- Attendance ...
 - When called ... please introduce yourself
 - Include the following
 - Education
 - Work Experience
 - Other notable work/engineering/hobbies
 - Future Plans

My Background

- Education
- Work Experience
- Other notable work/engineering/hobbies
- Future Plans

Syllabus

- Syllabus ...
 - Hard copies will be distributed
 - Electronic copy available on the class website
 - Web Address on syllabus
- Syllabus details ...
 - Next slide

Syllabus Review

Week	Date	Topics	Lab	Lab Report Due
1	09/05/13	Introduction/Basic Data Conversion, Course Overview, Op Amps in Data Conversion		
2	09/12/13	Op Amp Lab	1	
3	09/19/13	Sample and Hold Lecture and Lab	2	
4	09/26/13	A/D Conversion Fundamentals and Lab	3	1
5	10/03/13	A/D Conversion Lab Continuation	3 con't	
6	10/10/13	Examination 1		
7	10/17/13	D/A Conversion Fundamentals and Lab	4	2
8	10/24/13	D/A Conversion Lab Continuation		
9	10/31/13	Microcontroller and Sensors	4 con't	3
10	11/07/13	Microcontroller and Sensor Lab	5	
11	11/14/13	V/F and F/V Conversion Lecture	5 con't	4
12	11/21/13	Examination 2	Project	5
X	11/28/13	No Class – Thanksgiving		
13	12/05/13	Work on Course Project	Project	
14	12/12/13	Final Exam/Course Project Brief and Demonstration	Demo	

Grading Policy

- Located at the bottom of syllabus
- Exam # 1 (20%) Exam #2 (20%)
- Laboratory ... including lab reports (30%)
- Final Exam/Course Project (30%)

Α	93-100	A-	90-92		
B+	87-89	В	83-86	B-	80-82
C +	77-79	С	73-76	C-	70-72
D+	67-69	D	60-66		
F	Below 60				

Class Hours

- Thursdays evenings ... 6:30 9:20 PM
 - See syllabus for schedule of classes
- Please email me if you will not be in class ...
- I am available for extra help *Before / After* class
 - If possible ... please schedule in advance so I will ensure that I am available
- Labs start to pick-up at approximately 9:05 PM

Textbook

- Textbook is available on-line
 - The Data Conversion Handbook, Analog Devices, Newnes 2005
 - The text is an Excellent Reference Source
 - We will also utilize other material to complement the class ...
 - Which will be available on-line

Course Web Site

• The Course Web site Homepage is at:

http://faculty.uml.edu/dbowden

- This website will contain the following:
 - Syllabus
 - Lab material
 - Labs procedures
 - Datasheets
 - Reference documents
 - Such as the textbook material
 - Links
 - Class lectures (will be placed on the web site <u>AFTER</u> the lecture)
 - Homework

Email Distribution List

- I will be creating a class email list
- Email me at ...

Dohn_Bowden@uml.edu

- This will ensure that your correct email address or addresses are included
- The email list will allow me to provide information to each of you

Course Objectives

- What do you want to get out of this class?
- My goals for the course ...

Course Evaluations

• How they are used

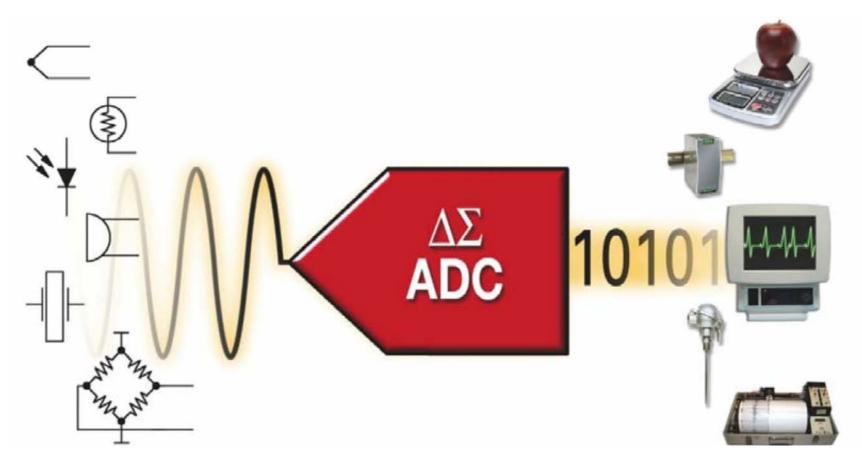
Questions?

- This is a lecture and a "Hands-on" (Lab) course ...
 - The best way to apply what you learn is by doing!
 - Similar to learning how to drive a car
 - Proficiency through experience
 - Experience with Data Conversion concepts by ...
 - Knowledge of components ... and
 - The identification and application of Data Conversion Techniques

- Introduces the basic principles of data conversion
 - Along with the reasons we want to utilize them
 - And ...
 - When they should be used
- Covers the theory of operation for practical data conversion
- Theory is complemented with corresponding laboratory experiments

- An understanding of analog signals
- The representation of an analog signal as a digital value
- Identification of the electronic components used in the conversion
 process
- Lab assignments
- Conclude with the design and building of a course project
 - Application of the techniques and information covered during the course

- Typical Lecture/Class Structure
 - Detailed Technical Discussions
 - Lab
 - Overview
 - Lab Conduct
 - Homework


Detailed Technical Discussion

A Quick Look at ...

Analog/Digital Signals and the ADC

Where are we headed?

Ultimately ... Signal Conversions from one form to another (I.E. ADC)

Analog Signals

- Real world signals are analog (naturally occurring)
 - For example ... sensors
- We need to be able to take these signals and convert them to a useful format (i.e. digital format) in order to be able to process them with the computer and/or digital logic circuits
- We can design circuits to do these conversions ... or ...
 - Utilize components designed to perform these conversions (for example ... the analog to digital converter)

Analog Fundamentals

- Before we get into the specifics of the Analog to Digital converter lets focus on some fundamentals:
- What is an *analog* signal?
 - An *analog* signal is <u>continuous</u> in amplitude & time within certain limits, i.e., it changes smoothly without interruptions
 - An example ...
 - a sinusoidal signal

Fundamentals

- What is a *digital* signal?
 - A *digital* signal is <u>discrete</u> in amplitude and time ...
 - i.e., it can only take certain specific values within certain limits at specific time intervals
 - When numbers are assigned to these steps (usually binary numbers) the result is a digital signal
 - An example ... a square wave is a 1-Bit digital signal with its high level being a binary '1' and its low level being a binary '0'

Analog to Digital Converter

- What is an *Analog-to-Digital converter*?
 - An *Analog-to-Digital converter* (ADC) is an electronic circuit that changes or converts a continuous analog signal into a digital signal without altering its critical content

Analog to Digital Converter

- How does an Analog-to-Digital converter work?
 - In the simplest terms ... an *Analog-to-Digital converter* ...
 - *Samples* an analog waveform at uniform time intervals ...

and ...

• Assigns a digital value to each sample, which is called *Quantization*

The ADC Process

- Therefore, the *Analog-to-Digital* conversion carries out two processes ...
 - Sampling

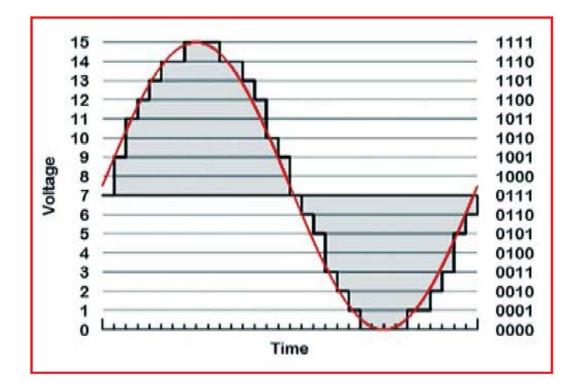
and ...

- Quantization

Sampling

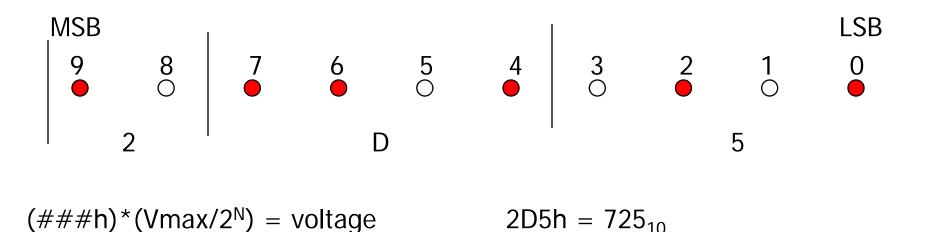
- Sampling is ...
 - The reduction of a continuous signal to a discrete signal
 - Specifically ... Sampling is the process of analyzing the continuous analog signal with measurements taken at discrete and standard intervals
 - An example ... the conversion of a sound wave (a continuous-time signal) to a sequence of samples (a discrete-time signal)

Quantization


- *Quantization* is ...
 - The procedure of constraining something from a continuous set of values (such as the real numbers) to a discrete set (such as the integers)

Quantization

- The ADC represents an analog signal as a digital string of 1's and 0's with finite resolution
 - The ADC outputs a finite number of digital values for each sample taken ...
 - equal to 2^N


(where N is the number of bits of the ADC)

We can represent an analog signal as a digital value

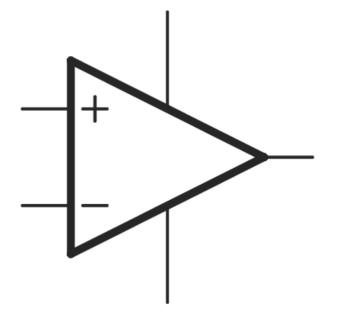
Digital Representation of an Analog Signal

• For example ... LEDs (Digital) representation of Analog voltage ...

 $(2D5h)^{*}(5/2^{10}) = 3.54$ volts

The Op Amp ...

Our First Building Block


Operational Amplifiers (Op Amps)

- Components of the Data Conversion process will be introduced
- Starting with ... the Operational Amplifier
- Operation Amplifiers ... better known as Op-Amps
- As we shall see ...
 - Op amps can be configured in numerous ways (I like to look at an op amp as a "Programmable device")
 - Programmable in that we utilizing external components to achieve the desired function, or *operation*
- For example ... op amp circuits can restore original, weak signals which may be contaminated by "pick-up" and other miscellaneous noise

Operational Amplifiers (Op Amps)

- In this course, we will utilize op amps in ...
 - Sample and Hold circuits (we shall encounter them soon)
 - Conversions between analog and digital systems

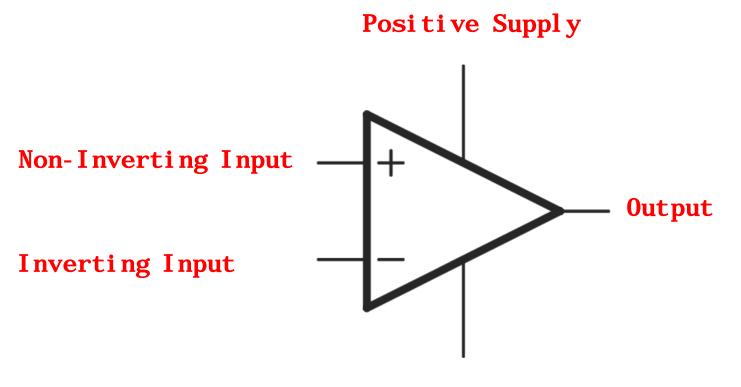
The Op Amp Universal Symbol

Op-Amp Attributes

- **Op-Amp** ... An analog electronic circuit element
- First ... *Ideal* Op Amp Attributes:
 - Infinite differential gain (High voltage gain)
 - Zero Common Mode Gain
 - Zero Offset Voltage
 - Zero Bias Current

Op Amp *Input* Attributes

- * High input impedance
- Low Bias Current
- Responds to Differential Mode Voltages
- Ignores Common Mode Voltages


Op Amp *Output* Attributes

• * Low output (source) impedance

The Op-Amp

- An op amp is a ...
 - Differential input, ...
 - Single-ended output ... amplifier
- In other words ... an Op Amp processes
 - Small
 - Differential mode signals appearing between its two inputs
 - Developing a single-ended output signal referred to a power supply common terminal

Op Amp Symbol with Minimum Terminals Identified

Negative Supply

Op-Amp Gain

- An Ideal Op Amp has infinite gain ...
 - For differential input signals
- *Real devices* have high gain ...
 - Called open loop gain

Open Loop/Closed Loop

- What is the difference between **Open Loop** and **Closed Loop**?
 - Open Loop ... no feedback used
 - Closed Loop ... feedback network used

Gain

- Gain is measured in terms of V_{OUT}/V_{IN}
 - Dimensionless ... Volt/Volt
- More often Gain is expressed in decibel
- What would the gain be in terms of decibels?

Gain in Decibels

dB = 20*log (numeric gain)

• EXAMPLE ...

– Numeric gain of 1 million (10⁶ V/V) is equivalent to 120 dB

- Open Loop Gains of 100 dB to 130 dB are common for precision op amps
- Open Loop Gains of 60 dB to 70 dB are common for high speed op amps
- Closed Loop Gain depends on the feedback network

Feedback

- Feedback consists of comparing the output of a system with the desired output and making corrections accordingly
- Feedback is an essential and salient point concerning op amp use
- With feedback, the net closed loop gain characteristics become primarily dependent on external components and less dependent on the relatively unstable amplifier open loop characteristics

Feedback Example

- Process of driving a car
 - The output ... position and velocity of the car
 - Output is sensed by the driver
 - The driver compares the output with expectations

... And makes corrections to the input (steering wheel, throttle, brake)

- In amplifier circuits the output should be a multiple of the input
 - So in a feedback amplifier the input is compared with the attenuated version of the output

Negative/Positive Feedback

- Feedback can be either **Negative** or **Positive**
 - Negative Feedback ... the process of coupling the output back in such a way as to cancel some of the input
 - Feedback loop is connected to the inverting input
 - Positive Feedback ... the process of coupling the output back in such a way as to add to the input
 - Feedback loop is connected to the non-inverting input

Negative Feedback

- Negative Feedback does lower the gain ...
 - but the benefits outweigh the loss of gain
- In fact, as more negative feedback is used, the resultant amplifier characteristics become ...
 - Less dependant on open loop characteristics
 - And ... Dependant on the properties of the feedback network itself

Negative Feedback

- Why would you want to apply Negative Feedback?
 - You may think that this would only have the effect of reducing the amplifier's gain and would be a pretty stupid thing to do.
- Negative feedback ...
 - Improves ...
 - Freedom from distortion and nonlinearity
 - Flatness of response (or conformity to some desired frequency response)
 - And ... predictability

Positive Feedback

- Feedback can also be *Positive*
- Positive feedback is how you make an oscillator
- However ... positive feedback is not as important as negative feedback

Op-Amp Input Characteristics

- **Common Mode** (CM) signals are signals which are "common"/identical to one another at each input terminal
 - Ideal op amps ...
 - Will reject Common Mode signals
 - There is no gain for signals that are common to both inputs

Op-Amp Input Characteristics

- Offset voltage V_{os} ... a small differential voltage must be applied to the inputs to force the output to zero
 - An ideal op amp has zero Offset voltage Vos
 - Ideally if both inputs of an op amp are at the exactly the same voltage, the output should be at zero volts
 - In practice, a small differential voltage must be applied to the inputs to force the output to zero ... Offset voltage Vos
- There is a wide range of actual values depending on the actual structure of the op amp

Op-Amp Input Characteristics

- **Bias current** I_B ... the currents flowing into both op amp inputs
 - An ideal op amp draws **zero bias current I_B** at both inputs
- There is a wide range of actual values depending on the actual structure of the op amp

Signals Applied to Inputs

 Inverting Input ... Any DC or AC signal applied to the Inverting input is 180° out of phase at the output

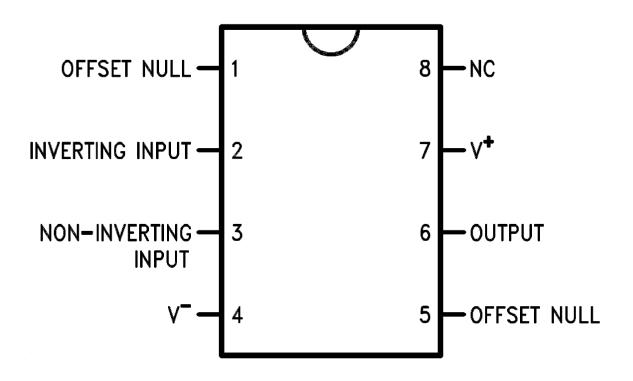
• *Non-Inverting Input* ... Any DC or AC signal applied to the Non-Inverting input is in phase at the output

General Information

- Op amps have a positive and negative power supply terminals
- Op amps rarely, if ever, have a ground connection
 - Op amp output voltage becomes referred to a power supply common point
- Where is the op amp grounded?
 - Answer ... simply that it is indirectly grounded
 - Indirectly grounded by virtue of the commonality of its input, the feedback network, and the power supply
 - Hence we have a virtual ground

Virtual Ground

- Since an operational amplifier has very high open loop gain ...
 - The amplifier acts automatically to make the potential difference between its inputs tend to zero
 - The non-inverting (+) input of the operational amplifier is grounded ... then ...
 - Its inverting (-) input ... although not connected to ground


- Will assume a similar potential ...

- ... thus ... Becoming a virtual ground

The 741 Op-Amp

- There are many op-amps available today
- We will utilize the 741 for our class work
 - As the 741 is ...
 - Simple
 - Inexpensive ...
 - ... And ... it can be used to focus on our class topics

The 741 IC Schematic

Op-Amp Configurations

- We will utilize the following op amp configurations:
 - Inverting Amplifiers
 - Buffer
 - Summing Amplifiers
 - Comparators

• There are many other configurations ... but we will only focus on the above configurations

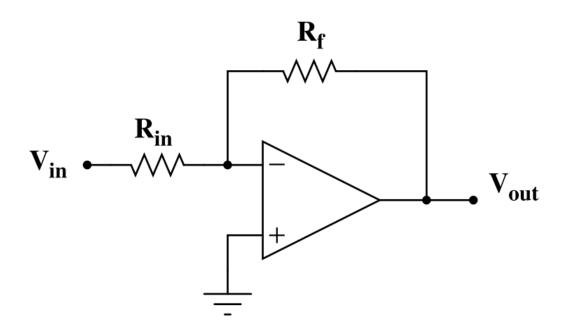
Op-Amp Circuit Analysis

- Before we get into the details for each of the op amp configuration we will provide some basic background information
- One may ask ... Where do the op amp equations come from for the various configurations?
 - We shall utilize simple DC circuit analysis ... and ...
 - Some basic "Ideal" op-amp assumptions

Assumptions

- The inputs to the op amps do not draw any current
 - The input impedance is so high that we can ignore the small currents that may leak into the amplifier
 - Helps us apply Kirchhoff's current law during the analysis

Assumptions

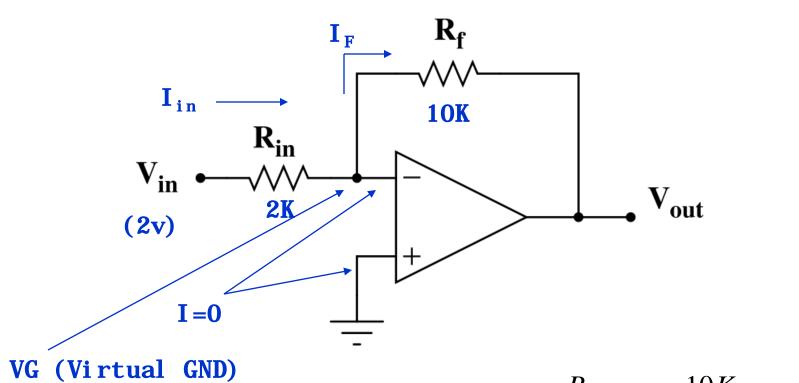

- The differential input voltage is zero when negative feedback is used
 - The op-amp will push or pull enough current (within reasonable conditions) through its output and feedback resistor to make the voltage at each input identical
 - This leads to the differential input voltage of zero
 - Another way of looking at it is to remember that the voltage on each input must be identical when there is negative feedback.

Assumptions

- The op amp voltage gain is so high that ...
 - A fraction of a millivolt between the input terminals will swing the output over its full range
 - Therefore we ignore that small voltage and state:
 - The output attempts to do whatever is necessary to make the voltage difference between the inputs zero

The Inverting Amplifier ...

The Inverting Amplifier


$$V_{OUT} = -V_{in} * \left[\frac{R_f}{Rin}\right]$$

Inverting Amplifier

- The inverting amplifier uses negative feedback to control the very large open loop gain
- Recall for open loop configuration ... a 25 Microvolt (µV) input signal would result to the saturation voltage of +5V or -5V depending on the polarity of the input signal and which terminal it was applied
- The inverting configuration controls the gain

Inverting Amplifier

• Find V_{OUT} ...

$$V_{OUT} = -V_{IN} * \frac{R_F}{R_{IN}} = -2 * \frac{10K}{2K} = -10V$$

71

Inverting Amplifier

- In order to achieve the output from the previous example ...
 - We need to make sure that the op-amp is powered with at least

$$\pm \frac{10V}{80\%} = \pm 12.5V$$

 Due to the fact that the 741 op amp has an output saturation of ~ 80% of the supplied voltages

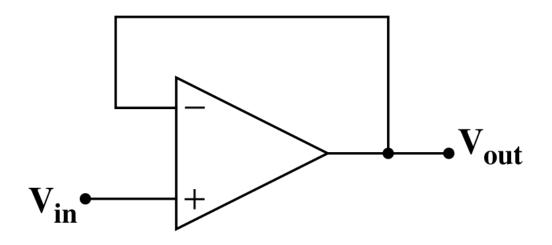
Gain

$$V_{GAIN} = \left| \frac{V_{out}}{V_{in}} \right| = \frac{R_F}{R_{IN}} = \frac{10K}{2K} = 5$$

or

$$V_{GAIN} = \left| \frac{V_{out}}{V_{in}} \right| = \frac{10}{2} = 5$$

 $dB = 20^*\log (numeric gain) = 20^*\log (5) = 14 dB$


Gain

• Another Example ...

- If ...
$$V_{GAIN} = 10$$

V _{IN}	V _{OUT}
+0.2	-2
-0.4	+4
0	0
+0.32	-3.2

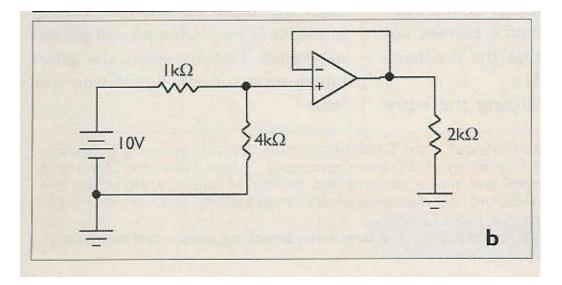
The Buffer ...

$$V_{OUT} = V_{IN}$$

The *Buffer* ... also known as the Follower

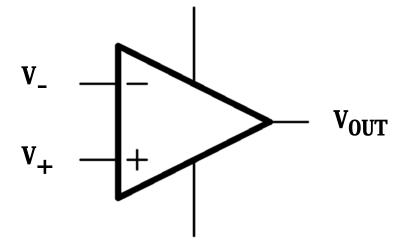
- The Simplest amplifier configuration
 - As it requires no external components ...
 - Just a short between the output and inverting input

- The buffer is a Non-Inverting amplifier with ...
 - R_F set to zero ... and ...
 - R_{in} set to infinity
- Therefore ... using the non-inverting gain equation ...


$$GAIN = \frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_F}{R_1} = 1 + \frac{0}{\infty} = 1$$

• We see that ...

$$V_{OUT} = V_{IN}$$


- Why would we want an amplifier with a gain of 1?
 - Recall that ...
 - The op amp input sees a high impedance
 - Output of the op amp sees a low resistance (around 50 ohms)
 - Therefore ... impedance isolation (buffer) is useful when you want to eliminate the loading effect of one component or circuit on another
 - In other words it "Buffers" the input signal from the load

• Example ... using a buffer ...

The Comparator ...

The *Comparator*

Comparator Fundamentals

- Compares the voltage level of two analog signals (inverting and non-inverting inputs) ... and ...
 - Identifies which signal is the largest
- Any minute difference between the applied voltages drives the output into saturation
- Because of its high gain and stable characteristics, the differential op amp is the main building block for the *comparator*

The *Comparator*

- The op amp is operating in the open loop mode when used in the comparator configuration
- There are devices made specifically for use as comparators ...
 - Why use devices specifically made as comparators?
 - Improved recovery times
 - Improved switching speeds
 - Improved output levels
- We will use the 741 op amp in open loop mode, vice specific comparator components

Why would we need a *Comparator*?

- Switching on lights and heaters
- Generating square waves from triangle waves
- Detecting when a level in a circuit exceeds some particular threshold
- Switching power supplies
- And so on ...

Comparators

- The output goes positive when the non-inverting input is more positive than the inverting input
- The output goes negative when the inverting input is more positive than the non-inverting input
- Therefore ...

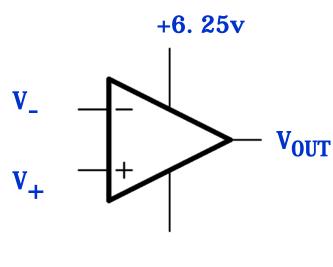
IF V- < V+ ... output is positive

IF V+ < V- ... output is negative

IF V- = V+ ... output is zero

The741 Op Amp Output Saturation

- The 741 op amp has an output saturation of ~ 80% of the supplied voltages
- Therefore, to obtain an output (saturation) voltage of +5v or -5v


- We would need to supply +6.25v and -6.25v

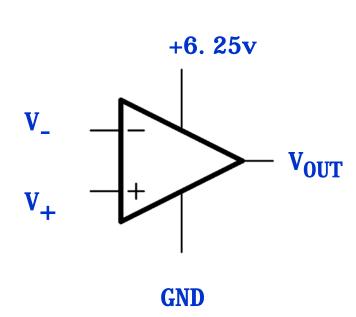
80% of 6.25 = 5.0 volts

Comparator Example

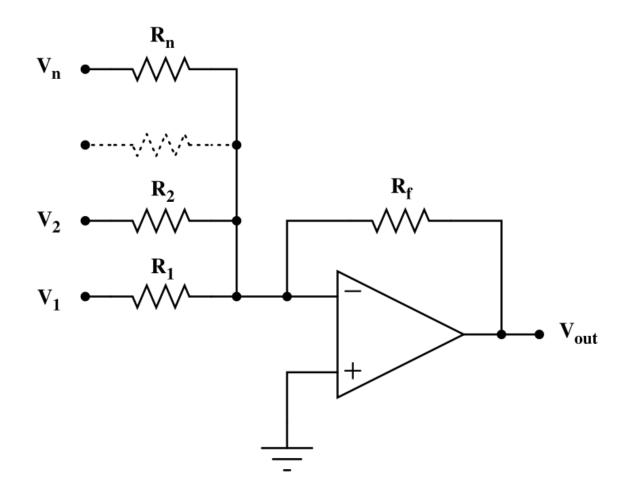
Example 1: ... we have a positive supply voltage of 5 — and a negative supply voltage of -5. Assume a 741 op amp.

What is V_{OUT} for the values indicated in the table?

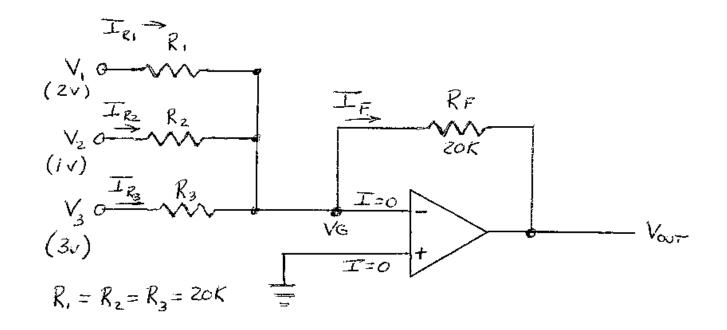
- 6. 25v


V_	V,	V _{OUT}
+1	-1	-5
+1	+2	+5
+2	+1	-5
0	0	0
-1	+1	+5
0	-1	-5
0	+1	+5
+3	+3	0

.25


Comparator Example

Example 2 ... we have a positive supply voltage of +5 and a negative supply voltage set to ground. Assume a 741 op amp.


What is V_{OUT} for the values indicated in the table?

V_	V,	V _{OUT}
+2	-1	0
+1	+2	+5
+2	-2	0
0	-1	0
-2	-2	0
0	+1	+5

• The voltage summing amplifier is capable of adding the algebraic sum of several applied voltages to one of it's input lines

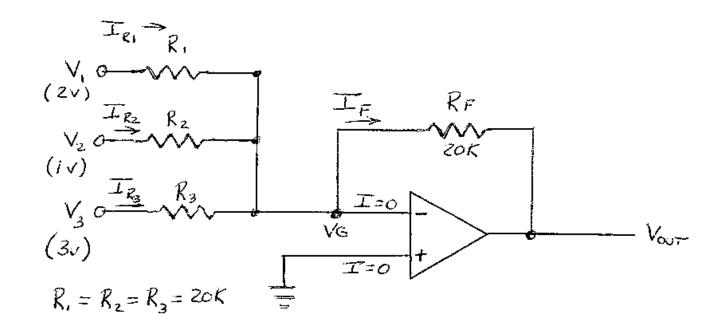
- We have a virtual ground at the inverting input
- The input currents in each leg are ...

$$I_{R1} = \frac{V_1}{R_1} \qquad I_{R2} = \frac{V_2}{R_2} \qquad I_{R3} = \frac{V_3}{R_3}$$
$$I_{R3} = I_{R1} + I_{R2} + I_{R3}$$

$$V_{OUT} = -I_{R_F} * R_F$$

• Or ...

$$V_{OUT} = -\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right) * R_F = -\left(\frac{R_F}{R_1}V_1 + \frac{R_F}{R_2}V_2 + \frac{R_F}{R_3}V_3\right)$$


• And for ...

$$R_1 = R_2 = R_3 = R_F$$

• We have ...

$$V_{OUT} = -(V_1 + V_2 + V_3)$$

• Using the values shown on the initial drawing for the summing amplifier ...

$$I_{R1} = \frac{V_1}{R_1} = \frac{2}{20K} = 0.1mA$$
$$I_{R2} = \frac{V_2}{R_2} = \frac{1}{20K} = 0.05mA$$
$$I_{R3} = \frac{V_3}{R_3} = \frac{3}{20K} = 0.15mA$$

 $I_{RF} = I_{R1} + I_{R2} + I_{R3} = 0.1 + .05 + .015 = 0.3mA$

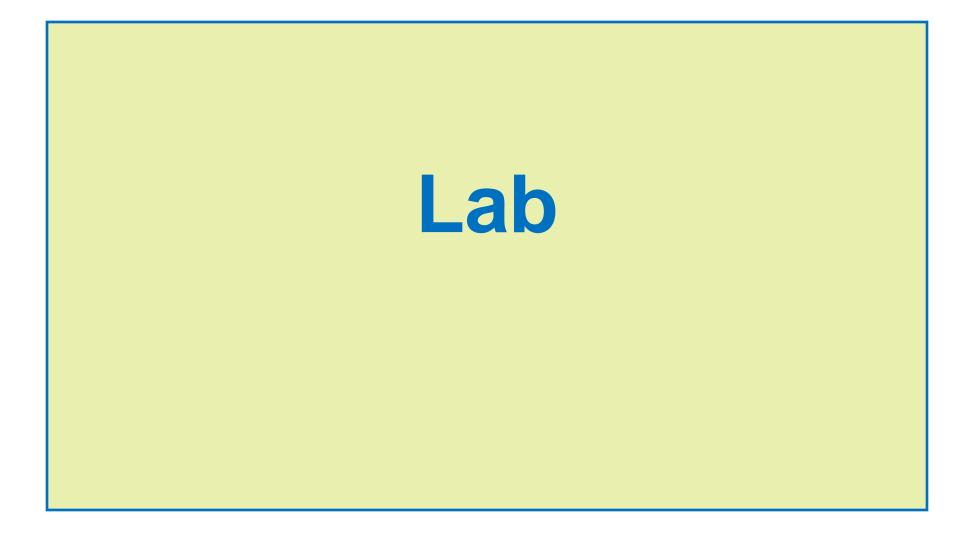
$$V_{out} = -I_{RF} * R_F = -(0.3mA) * (20K) = -6volts$$

Example - Voltage Summing Amplifier

• For ...

$$R_{1} = R_{2} = R_{3} = R_{F}$$
$$V_{OUT} = -(V_{1} + V_{2} + V_{3})$$

V ₁	V ₂	V ₃	V _{out}	
+1	+1	+1	-3	
+1	-1	-1	+1	
+2	-1	-1	0	
-3	-1	+3	+1	_
+1	+2	-1	+2 -	2



Summary

- Op amps are our first data conversions building block
- Op amps can be configured in numerous ways utilizing external components in order to achieve the desired function, or *operation*
- Major attributes of op-amps
 - High voltage gain
 - High input impedance
 - Low output impedance

Summary (continued)

- Open loop, closed loop, and negative feedback
- Gain is measured in terms of V_{OUT}/V_{IN}
- Discussed in detail the following op amp configurations:
 - Inverter
 - Buffer
 - Summing
 - Comparator
- And looked at their equations

Lab Overview ...

- Simulation using software is not an acceptable alternative to breadboarding
- Benefits of hands-on labs/breadboarding ...
 - Use of ...
 - Components
 - Test equipment
 - Knowledge of Test equipment is a foundation for hardware troubleshooting
 - ** Learn troubleshooting techniques
 - ** Will greatly enhance the class material
 - Solving Lab Problems will enforce the course material

- Basic lab knowledge/techniques
 - Use of a breadboard
 - Learn the identification systems for components
 - Resistors
 - Capacitors
 - Integrated circuits
 - Application of data sheets

- Problems encountered during lab performance ...
 - Knowledge gained from troubleshooting

20 points

- Lab grade ...
 - Lab proficiency
 - Lab Report Format
 - Lab Notebook
 - Technical adequacy
 - Late deductions

20 points20 points40 pointsas much as 30 points

- Explanation on why a lab could not be completed
- Lab preparation
 - · Need to work through the lab prior to class
- Lab Results ...
 - Record in your lab notebook events/results
 - Write on what you did during the class ...
 - Not what you did after the lab

- Things you should bring to the lab ...
 - A container for your board, parts, tools, etc.
 - Tools
 - Wire strippers
 - Wire cutters
 - Jeweler's screwdrivers
 - Screwdriver
 - A copy of the lab (available on the web)

LAB OVERVIEW

- Lab Reports
 - Report form for each lab will be available on the web page
 - Electronic report submission is preferred over hard copies ...
 - PDF format preferred ... talk to me about other formats
 - Send via email NLT than 11:59 PM on the due date
- Lab results will usually be due 2 weeks after completion of the lab (as indicated on the syllabus)
- Labs will be available for downloading from the website NLT Wednesday evening

Lab #1 ...

- Lab #1 will start next week
 - I will post it on the Course Web page by next Wednesday night

Lab #1 – Overview

- Build and test the following circuits ...
 - Comparator
 - Inverting Amplifier
 - Summing Amplifier

Next Class

Next Class Topics

• Perform Lab #1

Homework

Homework

- 1. Send me an email so I have your email address
- 2. Textbooks ... available on class webpage
 - Review Class Material
- 3. Prepare for Lab #1
 - Download the lab ... available NLT next Wednesday night
 - Bring your lab tools
 - Obtain a Lab notebook

Time to start the lab...

• No lab scheduled for this week ...

Questions?

References ...

References

1. None